a2zpapers.com

Exam. Code : 103205 Subject Code : 9262

B.A./B.Sc. 5th Semester (Old Sylb. 2016) MATHEMATICS (Linear Algebra)

Paper-II

Time Allowed—3 Hours]

[Maximum Marks—50]

Note :— Attempt any FIVE questions in all, choosing at least **TWO** from each Section.

SECTION-A

- I. (a) Let Q* denotes the set of all rational numbers except
 1, then show that Q* forms an infinite abelian group under the operation o defined by a o b = a + b ab for all a, b ∈ Q*.
 - (b) Define field and give an example of a ring which is not a field. 5,5
- II. (a) Is R a vector space over C? Justify.
 - (b) If S is any subset of a vector space V(F), then show that S is a subspace if and only if L(S) = S. 4,6
- III. (a) Define complementary subspaces and give an example of subspaces that are not complementary.
- (b) Find condition on a, b, c so that the vector v = (a, b, c) ∈ R³ belongs to the space generated by u = (1, -1, 2), v = (0, 3, -4), w = (2, 1, 0).
 5.5

327(2117)/BSS-31379

1

(Contd.)

www.a2zpapers.com www.a2zpapers.com

ad free old Question papers gndu, ptu hp board, punjab

a2zpapers.com

- IV. (a) Define basis and finite dimensional vector space.
 - (b) Let V(R) denotes the vector space of all functions from R to R. Let W₁ = {f|f ∈ V and f(-x) = f(x)}, the set of all even functions and W₂ = {f|f ∈ V and f(-x) = -f(x)}, the set of all odd functions be two subspaces of V(R). Show that :

(i)
$$V = W_1 + W_2$$

(ii)
$$W_1 \cap W_2 = \{0\}$$

(iii) $V = W_1 \oplus W_2$.

- 2,8
- V. (a) Extend B = {(1, 1, 1, 1), (1, 2, 1, 2)} to a basis of $R^4(R)$.
 - (b) Let W be a subspace of a finite dimensional vector space V(F). Then prove that :

$$\dim V/W = \dim V - \dim W. \qquad 4,6$$

SECTION-B

- VI. (a) Let V be a finite dimensional vector space and T: V → V is a linear transformation such that rank T² = rank T. Show that range and null space of T are disjoint.
 - (b) Verify rank-nullity theorem for $T : \mathbb{R}^4 \to \mathbb{R}^3$ defined by T(x, y, z, w) = (x + y, y - z, z - w). 5,5
- VII. (a) Prove that every n-dimensional vector space over field F is isomorphic to the space Fⁿ.
 - (b) Give an example of a linear transformation T: V → V such that its range and null space are identical.

327(2117)/BSS-31379

(Contd.)

www.a2zpapers.com www.a2zpapers.com

ad free old Question papers gndu, ptu hp board, punjab

2

a2zpapers.com

- VIII.(a) Prove that a linear operator $T: V \rightarrow V$ is invertible if and only if T is one-one and onto.
 - (b) Find inverse of linear operator T on R³ defined by T(x, y, z) = (x - 2y - z, y - z, x). 6,4
- IX. (a) Give an example of a linear operator $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that $T \neq 0$ but $T^2 = 0$. Justify your assertion.
 - (b) Let T: V → V be a linear operator, where V is a finite dimensional vector space over field F. Suppose B = {v₁, v₂, ..., v_n} is a basis of V(F). Prove that [T; B] [v; B] = {T(v); B] for any vector v ∈ V. 3,7
- X. (a) Find linear mapping $T : \mathbb{R}^2 \to \mathbb{R}^3$ determined by the matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 2\\ 1 & -1\\ 2 & 3 \end{bmatrix}$$

with respect to ordered basis $B_1 = \{(1, 2), (0, 3)\}$ and $\{(1, 1, 0), (0, 1, 1), (1, 1, 1)\}$ for R^2 and R^3 respectively.

(b) Let S = {1, i} and T = {2 + i, 1 + 3i} be two basis of vector space C(R) of complex numbers over reals, what is the transition matrix from basis T to basis S ?

327(2117)/BSS-31379

2000

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab