Exam. Code : 103205
 Subject Code : 9262

B.A./B.Sc. $5^{\text {th }}$ Semester (Old Sylb. 2016) MATHEMATICS
 (Linear Algebra)
 Paper-II

Time Allowed-3 Hours]
[Maximum Marks-50
Note :-Attempt any FIVE questions in all, choosing at least TWO from each Section.

SECTION—A

I. (a) Let Q^{*} denotes the set of all rational numbers except 1 , then show that Q^{*} forms an infinite abelian group under the operation o defined by a o $b=a+b-a b$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{Q}^{*}$.
(b) Define field and give an example of a ring which is not a field.
II. (a) Is R a vector space over C ? Justify.
(b) If S is any subset of a vector space $V(F)$, then show that S is a subspace if and only if $L(S)=S$.

4,6
III. (a) Define complementary subspaces and give an example of subspaces that are not complementary.
(b) Find condition on $\mathrm{a}, \mathrm{b}, \mathrm{c}$ so that the vector $\mathrm{v}=(\mathrm{a}, \mathrm{b}, \mathrm{c}) \in \mathrm{R}^{3}$ belongs to the space generated by $u=(1,-1,2), v=(0,3,-4), w=(2,1,0)$.
IV. (a) Define basis and finite dimensional vector space.
(b) Let $\mathrm{V}(\mathrm{R})$ denotes the vector space of all functions from R to R. Let $W_{1}=\{f \mid f \in V$ and $f(-x)=f(x)\}$, the set of all even functions and $W_{2}=\{f \mid f \in V$ and $\mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x})\}$, the set of all odd functions be two subspaces of $V(R)$. Show that :
(i) $\mathrm{V}=\mathrm{W}_{1}+\mathrm{W}_{2}$
(ii) $\mathrm{W}_{1} \cap \mathrm{~W}_{2}=\{0\}$
(iii) $\mathrm{V}=\mathrm{W}_{1} \oplus \mathrm{~W}_{2}$.
V. (a) Extend $\mathrm{B}=\{(1,1,1,1),(1,2,1,2)\}$ to a basis of $R^{4}(R)$.
(b) Let W be a subspace of a finite dimensional vector space $V(F)$. Then prove that :
$\operatorname{dim} \mathrm{V} / \mathrm{W}=\operatorname{dim} \mathrm{V}-\operatorname{dim} \mathrm{W}$.
4,6
SECTION-B
VI. (a) Let V be a finite dimensional vector space and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is a linear transformation such that rank $T^{2}=$ rank T. Show that range and null space of T are disjoint.
(b) Verify rank-nullity theorem for $\mathrm{T}: \mathrm{R}^{4} \rightarrow \mathrm{R}^{3}$ defined by $T(x, y, z, w)=(x+y, y-z, z-w) . \quad 5,5$
VII. (a) Prove that every n-dimensional vector space over field F is isomorphic to the space F^{n}.
(b) Give an example of a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ such that its range and null space are identical.

6,4

327(2117)/BSS-31379
2
(Contd.)
VIII.(a) Prove that a linear operator $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is invertible if and only if T is one-one and onto.
(b) Find inverse of linear operator T on R^{3} defined by $T(x, y, z)=(x-2 y-z, y-z, x) . \quad 6,4$
IX. (a) Give an example of a linear operator $T: R^{3} \rightarrow R^{3}$ such that $\mathrm{T} \neq 0$ but $\mathrm{T}^{2}=0$. Justify your assertion.
(b) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear operator, where V is a finite dimensional vector space over field F . Suppose $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of $V(F)$. Prove that $[\mathrm{T} ; \mathrm{B}][\mathrm{v} ; \mathrm{B}]=\{\mathrm{T}(\mathrm{v}) ; \mathrm{B}]$ for any vector $\mathrm{v} \in \mathrm{V}$. 3,7
X. (a) Find linear mapping $T: R^{2} \rightarrow R^{3}$ determined by the matrix

$$
A=\left[\begin{array}{rr}
0 & 2 \\
1 & -1 \\
2 & 3
\end{array}\right]
$$

with respect to ordered basis $\mathrm{B}_{1}=\{(1,2),(0,3)\}$ and $\{(1,1,0),(0,1,1),(1,1,1)\}$ for R^{2} and R^{3} respectively.
(b) Let $\mathrm{S}=\{1, \mathrm{i}\}$ and $\mathrm{T}=\{2+\mathrm{i}, 1+3 \mathrm{i}\}$ be two basis of vector space $C(R)$ of complex numbers over reals, what is the transition matrix from basis T to basis S ?

7,3

